If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5.6^2+a^2=10.6^2
We move all terms to the left:
5.6^2+a^2-(10.6^2)=0
We add all the numbers together, and all the variables
a^2-81=0
a = 1; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·1·(-81)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*1}=\frac{-18}{2} =-9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*1}=\frac{18}{2} =9 $
| -3x+32=-5(x-4) | | 5x^2+65x-60=0 | | -12=2-7n | | -8-4v=-8+v | | 4x-5x+9=5x=-9 | | -3-5x=27 | | C(5)=0.05x+11.25 | | 8x-8=4+16 | | 24+n/4=-5 | | 5-5w=-9+9w | | 3(q−77)=48 | | 2c+5)=2 | | 5(2b-14)=5b=1 | | y-5/7+9=11 | | (3x-5)*7=7+7x | | -3-0.5x+13=0.3x | | 1/5x+11=3/4x | | (-6x)=96 | | 2(d+4)=-4 | | x/8-15=33 | | 19=2r+3 | | 10=2(p+1)+2 | | 5+3x+5x=-11 | | 2=(1+r)^20 | | 2=4+–2p | | (x)=35.00-0.25x | | 21x-12x=-72 | | 14+7h=8.40h | | 2w+3+7=24 | | w/2-4=-8 | | 10-6t=-5-t | | 17x+13=65 |